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Tensar+ is a free, cloud-based design software 
that allows engineers, contractors, and owners 
to design with geogrid in a variety of applications. 
The newly enhanced design solution features  

 
upon with Tensar software.

The Tensar+ design software platform  
enables you to:

• Design and evaluate project specs
• Compare alternative materials  

and project conditions
• See the cost and time savings  

in real time as you change  
parameters

• Analyse the sustainability  
of your projects

SCAN THE QR CODE
and start designing  
with Tensar+ today

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

e hny elwee nhhTT
o d h gtin wgiseo dtt

t gns ewollt aaahhtt
n rs a f i+arsneeTT

   

 

 

  

 
   

  
 

   

  

n foitulon sgised decnah
f ay oteiran a vd iirgeoh g

d on, asrotcartno, csreenig
n sgised desab-duol, cee

   

 

 

  

 
   

  
 

   

  

s erutae
. snoitacilpp

s renwd o
e rawtfon s

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

   

 

 

  

 
   

  
 

   

  

jjd
•

j
 ae

d
p  aee

d
rraapp

n a
mmooCC••

g• dnn

o

n agg

u 

iisseeDD

s y

•

a ou tu t
d

ooys y
+

eellbbaa
s

nnee
he d++

en

ararss

T

nneeTTehe

h

TT

o enTThhttwiwinnooppuu

   

 

 

  

 
   

  
 

   

  

s
sn

i
er

iidd
sllaaiirer

e
ttma ma
ec

eevviittnana
e 

ererttllaa
a scecppt st scec

m

jjoorre pe p

l

ttaauullaa

t

vvd ed e

::oo
g mrrooffttlalae pe e prraawwttffoon sn sgg

e

iisseedd

.erraawwttffoossrrraass

   

 

 

  

 
   

  
 

   

  

mmm

   

 

 

  

 
   

  
 

   

  
wi
a
S

   

 

 

  

 
   

  
 

   

  
yado t+raensTTehtwi
ginnigse dtrat sdna

ODEE QR CHAN TCS

   

 

 

  

 
   

  
 

   

  

c

ou

•ODE

orrr pr puu
e

oof yf yoo
s ehhttseseyyy

r
alalnnAA
am

•
reetteemam
e

ararpp
a emmiil tl t

o
aeen rn rii
h oe ce chhtee tee t

c
SS

p
•

cejejeoorrppddnnaa

   

 

 

  

 
   

  
 

   

  

s

yi
se sttececjjj

ae
o

yttlill

e 

iiababnnaiai

n

ttssuu s s

u

e
ss
e e ggnn

s
aahhu cu c

e s
oos ys yae a
d ts sgggnniivvaase s

s
mmii td t

s
nnt at ass

dt snnnioiottiiddnnnoocctt

   

 

 

  

 
   

  
 

   

  



Dear readers and visitors of 12th ICG,

Geosynthetics: Leading the Way to a Resilient 
Planet. This is the theme of the 12th International
Conference on Geosynthetics in Rome, Italy. 
The Nederlandse Geotextiel Organisatie (NGO), 
the official Dutch Chapter of the IGS, is grateful to
our Italian colleagues who prepared such a warm
welcome to this conference, which is one of the 
world-leading and largest international events 
dedicated to geosynthetics. This conference 
brings together international experts and stake-
holders in the geosynthetic business, providing an
intense 4-day program filled with keynote lectures,
training sessions, paper presentations, workgroup
meetings, IGS assembly, and a large exhibition 

with expert companies.
Additionally, there 
will be numerous 
opportunities to 
connect, learn and get 
inspired by one another. 

Working towards a 
resilient planet and 
society is absolutely
necessary. The effects
of climate change are
evident in daily news,
with increasing periods
of extreme drought,

heavy rainfall, and rising sea levels. These factors
are already impacting millions of people, and likely
the effects will just increase in the coming years.
The good news is that geosynthetics can contribute
as mitigation measure to limit CO2 emissions. 
One of the major goals of the EU Green Deal* and
national programs is to significantly reduce CO2

emissions (mitigation). This gives opportunities for
the civil, hydraulic and environmental engineering
sectors. Embedding geosynthetic applications in
structures can make an important contribution. 

For instance, a reinforced soil retaining structure 
can reduce CO2 emissions by an average of 75% (!) 
compared to a traditional solution with a steel sheet
pile wall. Alongside the mitigation of CO2 emissions
to limit climate change, a crucial aspect within the
conference theme is climate adaptation: creating
resilient solutions. Geosynthetics can contribute 
to resilient and sustainable solutions for improve-
ments of flood defences, coastal protection, 
sustainable infrastructure solutions, water 
containment systems for extreme rainfall and 
water storage for periods of intense drought. 

Within this GeoArt magazine, you will find three 
interesting articles about Dutch experiences, that
highlight the added value of geosynthetics. The
first article describes climate challenges and the
role of geosynthetics in enhancing flood defences
and coastal protection. The second article presents
a guideline for partly submerged, geotextile-
reinforced pile-supported embankments. Lastly,
the third article presents small-scale geocentrifuge
experiments on geogrid-anchored sheet pile walls.

Humanity is confronted with multiple and escalating
challenges due to climate change. Time is ticking.
We have limited time to make big steps forward and
make geosynthetics part of our sustainable future.
Who takes up the challenge? 

We hope you will enjoy this ‘GeoArt’, which is a 
special edition of the NGO magazine GeoKunst, 
and we wish you a lot of inspiration at the 12th ICG.

Be smart. Become resilient. 

Rijk Gerritsen

Editor-in-Chief GeoKunst / GeoArt Magazine

Board Nederlandse Geotextiel Organisatie 
(NGO, IGS Netherlands)
Erik Kwast, Rijk Gerritsen, Iljo Fluit, Suzanne van
Eekelen, Leo Kuljanski, Joris van den Berg and 
Technical secretary Joop Groenveld.
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*Reference https://commission.europa.eu/strategy-and-
policy/priorities-2019-2024/european-green-deal_en
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Introduction
Climate change has brought rapidly changing 
hydraulic conditions, with heavier rainfall, more
severe storms, higher river discharges, increased
flow velocities and wave overtopping. With 
nearly a billion people living in low-lying areas
near rivers and coastlines, securing and improving
flood defences and flood protection schemes has
become a global challenge. Integrating geosyn-
thetics on a larger scale into designs can lead to
better, faster and/or cheaper construction of
new flood defences, levee reinforcements or
coastal protections. This has the potential to 

considerably boost global flood protection 
programs. This paper illustrates the benefits and
added value of applying geosynthetics in flood
defences, aiming to encourage the use of these
materials by designers, contractors and authori-
ties. This paper is a shorter and modified version
of Gerritsen et al. (2023).

Climate change observations 
and impact
Based on data, global sea levels have risen about
0.20 m during the last 100 years, and the rate 
of rise is accelerating. The implications and 

consequences of the rising sea levels for people
on earth are enormous. The Intergovernmental
Panel on Climate Change (IPCC, 2022) has made
global assessments of potential scenarios, that
predict a sea level rise between 0.3 m and 1.5 m
by 2150, depending on the climate scenario. 
Figure 1 combines measurements and predictions
of sea level rise, clearly illustrating the major 
challenges in reinforcing existing, or realising
new flood defences.
The predictions of sea level rise obviously contain
uncertainties; nevertheless, the values will have
significant implications for the safety, liveability
and sustainability of residential, commercial 
and agricultural areas. Effects such as dune and
beach erosion along coastlines, due to high-water 
conditions, will become increasingly frequent
and intense. 

The global damage costs that result from floods
due to sea level rise are expected to increase 
significantly. Jevrejeva et al. (2018) show that
with a 0.86 m sea level rise (RCP8.5 scenario, 
median value) and without additional measures
for flood defences, the worldwide estimated
flood damage costs in the year 2100 are 11600
billion euro/year. However, implementing mea-
sures to improve coastal protection, could poten-
tially reduce these annual costs by about a factor
10. Despite this reduction, the costs remain 
substantial, indicating that the impact of sea level
rise and consequential costs of flooding will 
be very high for all coastal areas worldwide.
Haasnoot et al. (2018) listed possible measures 
for adaption to the accelerated sea level rise 
in  the Netherlands. 
1. Higher and wider flood defences; 
2. More beach nourishment; 
3. Structural measures to maintain the fresh 

water supply and water safety; 
4. Considerably higher frequencies in 

closing storm surge barriers. 

Applying geosynthetics can have a significant 
potential for adaptation measures. In this paper
we will focus on applications in flood defence
structures (1) and coastal defence (2). Building
with geosynthetics is highly sustainable, enables
the use of local less suitable soils and building in
difficult circumstances. 

CLIMATE CHANGE AND EXTREME WEATHER CONDITIONS: 
THE ROLE OF GEOSYNTHETICS SECURING 

FLOOD DEFENCES AND COASTAL PROTECTION

Figure 1 – Projected Global Mean Sea Level Rise (1950-2150) under different SSP scenarios, given in diffe-
rent colours and reliability range by IPCC (2022), Box TS.4 Sea Level, Figure adapted by Deltares. 

Figure 2 – Schematic section of a high-performance flood 
defence structure with soil reinforcement, geosynthetic clay liner as a barrier, 
nonwoven geotextile for filtration and separation and erosion control products on the embankments. 
Other possibilities (not shown) are erosion control mats and filter layers below a stone revetment.



Geosynthetics for flood defences
Geosynthetics can serve various functions in
flood defences, like erosion protection, reinfor-
cement, separation, sealing, drainage and filtra-
tion. Their potential contribution to levee
reinforcements is considerable (Gerritsen et al.,
2019). However, the complexity of levee rein-
forcements becomes larger due to higher safety
requirements, the need to preserve landscape
and buildings, and more severe hydraulic condi-
tions. Also financial budgets for flood control 
are under pressure. Consequently, alternative
and innovative techniques are increasingly seen
as necessary or highly desirable. 

Figure 2 shows a cross section of a flood defence
structure, showing multiple geosynthetics for 
various functions. Geosynthetic applications 
reduce the use of primary soil building materials,
enables the use of locally available soil, and 
significantly minimises the environmental impact
through lower CO2 emissions compared to 
traditional building methods.

To ensure adequate flood defences in the future,
the frequency of levee reinforcements in the 
coming decades will increase. It is therefore 
important to design the structures in a way that
allows for easy adaptation during the next levee
reinforcement. This involves ensuring that  (geo-
synthetic) materials can be easily removed from
the ground or that structures are extendable. 

GEOTEXTILE FILTER CONSTRUCTIONS 
UNDER STONE REVETMENTS
Stone revetments play an important role in pro-
tecting levees and coastlines. The selection of
stone gradings, ranging from 10 kg to over 3 
tonnes, depends on the hydraulic conditions.  To
ensure their proper functioning, it is essential 
to apply an adequate filter layer system that 
prevents gradings or subsoil to be washed away.
Traditional filtersystems can result in layer struc-
tures of 1-2.5 meter thickness. 

Using a geotextile filter is an efficient measure
below stone revetments, which can save between
0.3-1.0 m of granular filtermaterial. In addition 
to these savings, the use of geosynthetics can 
reduce the CO2-emissions with appr. 40-50%,
due to the significant reduction of the transport
of materials. Geosynthetic filter systems in rock

revetments have become widely adopted in 
hydraulic engineering projects, due to their 
easiness of installation and cost efficiency. 
Figure 3 gives an example of the construction 
of a placed block revetment on a nonwoven filter
on the slope and rock in the levee toe. For the 
application it is important to consider the filter
and application rules from SBRCURnet (2017) and
to ensure adequate robustness to avoid damage
by sharp stones as decribed by Bezuijen and 
Izadi (2018), Izadi et al. (2018), Bezuijen (2023). 

WATER BARRIERS WITH GEOSYNTHETIC 
CLAY LINERS (GCLS)
As an alternative for a 1 m thick layer of natural
clay, it is possible to implement a Geosynthetic
Clay Liner (GCL) in river levees. These mats, with
a thickness of approximately 1 cm, consist of a
cover and bottom geotextile with high quality
bentonite in between. GCLs can be used to seal
the foreland as an anti-piping measure, or in 
the levee itself (Figure 4). Apart from cost 
savings, Von Mauberge et al. (2022) show that
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A B S T R A C T

In the coming decades, it will be a great challenge to respond effectively to 
the global climate change, causing sea level rise, heavy rainfall, storms and 
extreme droughts. This response involves both climate mitigation, through 
CO2 reduction, and climate adaption, which requires adjusting our physical 
surroundings to the changed environmental conditions. Geosynthetics can play

a significant role in addressing these challenges. Geosynthetics contribute 
to CO2 reduction, thereby limiting climate change. Additionally, applying 
geosynthetics in flood defences mitigates issues like higher hydraulic loads, 
erosion and stability concerns. This paper describes some valuable applications
of geosynthetics for adapting and creating safe and resilient living areas.

Figure 3 – Filter construction using a non-woven geotextile below a placed block revetment on the slope
and rock in the levee toe (Markermeerdijken, The Netherlands).

Figure 4 – Geosynthetic Clay Liner (GCL) installed on the levee slope, crest and horizontally in the
foreland to enlarge the seepage length from the flood defence base, mitigating the risk of piping.



the application of GCLs offers several significant
advantages over natural clay such as sustaina-
bility (reduced energy requirement and CO2 

emissions for transport), faster construction (less
deep excavation and no need for dewatering) and
more use of nearby soil. Due to the swelling 
capacity of the bentonite, the mat is self-healing
to a certain extent. In Germany, multiple projects
with GCLs in flood defences have been executed
in the last decades, for example along the Oder.
In the Netherlands, two pilot projects have been
initiated by Water Authority Limburg. In Beesel,
GCLs have been installed on the crest and slopes
of the levee. In Neer, the CGLs were installed in
the foreland of the levee to extend the seepage
length and prevent piping.

GEOSYNTHETIC SAND CONTAINERS (GSCS)
FOR COASTAL PROTECTION AND 
REDUCING BEACH NOURISHMENT
Sand-filled geotextile containers can be filled 
on-site and installed on beaches to stabilize the
coastline (Figure 5). These containers can also 
be used in deeper water to prevent scour or to

fill up large scour holes. Scouring can occur 
in riverbeds during floods with extreme dis-
charges, in harbours, or due to hydraulic 
turbulence around structures like dams and 
outlet structures. 
In the area of Lubmin on the Baltic Sea, a hidden
underground protection structure has been 
built over 2 km of coastline using Geotextile Sand
Containers (GSCs). A total of 34,000 sand-filled
elements, weighing approximately 1.4 tonnes
each, were installed (Figure 6). The structure,
being covered with sand seamlessly blends with
the coastline, without restrictions for tourism and
beach life (Pries, 2022).

Geotextile elements are regularly used as break-
water core, dune foot defence structures, erosion
protection or water retaining structures as shown
by Pilarczyk (2000) and Bezuijen and Vastenburg
(2012). These applications are used world wide.
The use of geotextile elements in coastal or flood
defence structures has the potential to signifi-
cantly reduce the risks and effects of beach 
and dune erosion. This may reduce the number 

of beach nourishments, costs and maintenance
frequency of beaches and dunes after severe
storms. 

EROSION PROTECTION WITH 
3D STRUCTURE MATS
As a result of climate change, there will be higher
water levels, stronger currents, increased waves
and heavier rainfall. Therefore, more robust and
intelligent erosion protection systems for flood
defences are increasingly important. Robust 
erosion protection is crucial in cases of over-
flowing levee structures. One effective method
of erosion protection is the use of three-dimen-
sional geosynthetic structure mats, which rein-
force the topsoil layer on embankments (see
Figure 7). These mats, known as High Perfor-
mance Turf Reinforcement Mats (HPTRMs), 
provides protection of the bare soil or early 
vegetation, thus providing extra resistance to
erosion. This prevents the washing away of 
grass seeds or young vegetation, ensuring homo-
geneous germination, resulting inthe develop-
ment of a better-quality grass vegetation. 

In addition, the structure mats provide a long-
lasting reinforcement of the top layer within 
the root zone. This may be particularly necessary
at locations where higher loads are expected,
such as breaking waves, overtopping water and
strong currents. Special attention should be
given to slope transitions, where the loads are
often higher and the strength is less. 

SOIL REINFORCEMENT FOR EMBANKMENT 
STABILITY AND STEEP SLOPES
Raising embankments on soft soils can cause 
stability problems. A regularly applied solution is
the installation of high-strength soil reinforce-
ment at the base of the embankment, known 
as ‘basal’ reinforcement. The strength of this
reinforcement typically ranges from 300 to 1500
kN/m. Along the German-Polish border, along the
Oder, a 3 km levee stretch was reconstructed 
to withstand more extreme flood conditions. In
order to ensure sufficient stability of the new
levee, a high strength geogrid of 1000 kN/m was
installed as a basal  foundation reinforcement 
(Figure 8). 

Another application of geosynthetics on flood
defences is the realisation of steep slopes to 
reduce land usage. In many cases, there are exis-
ting structures such as houses adjacent to these
flood defences. As an alternative to vertical retai-
ning walls of steel or concrete, geogrid reinforced
soil structures can be used to create a steep 
slope, see POV Macrostabiliteit (2018) and
CUR/CROW (2018). Retaining walls utelizing 
geosynthetic reinforcement are generally 
flexible and are able to deform together with 
subsoil settlements. This makes geosynthetics

Figure 5 – Schematic cross-section of dune protection using Geotextile Sand Containers (GSCs)
underground structure, covered with beach sand and planted with helm grass.

Figure 6 –
Installation of 
Geotextile Sand 
Containers (GSCs) 
as a coastal 
protection measure 
in the dune core 
of the sandy beach, 
Ludmin, Germany.
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highly suitable for reinforcing levees in soft soil
areas. By using Finite Element Models (FEM), the
relationship between forces, deformation and
the interaction between soil and geosynthetics
can provide detailed insights. 

DRAINAGE SYSTEMS 
With the rise of water levels outside the levees
and subsidence in the polders, the hydraulic loads
on flood defences are increasing. The increased
hydraulic head will have a negative effect on the
stability of flood defences. However, geosynthe-
tic drainage systems can have a positive effect on
hydraulic pressures. Installing levee drainage can
be useful to avoid failure mechanisms such as
macro and micro stability, by influencing the
phreatic water line in the embankment.
Geosynthetic drainage mats consist of 3D struc-
ture composites, which must be pressure-stable
under the given conditions. These drainage mats
can be installed vertically (for example as toe
drainage), horizontally (partly under the embank-
ment core or berm) or on the slope.

Conclusions
Climate change has significant effects on flood
defences world wide. Sea level rise and extreme
weather events have consequences for the
safety, quality of life and sustainability of 
residential, industrial and agricultural areas. 
In the coming decades, extensive and costly 
operations to flood defences have to be initiated
to keep local areas, larger regions or full countries
safe and sustainable.

For the challenge of climate adaption, geosynthe-
tics can contribute to adapt safe and resilient 
living areas for humanity. Geosynthetics can 
play a positive role in new or existing coastal and
riverine flood defence systems: more sustainable,
faster and/or cheaper construction. Making 
future-proof designs with geosynthetics in 
embankments is also a challenge. Levees must 
be adaptable to accommodate future levee rein-
forcements, in which applied geosynthetics in the
levee should be manageable and not be an obsta-
cle. Development of integrated concepts with 
geosynthetics will offer major potentials to 
advancing flood protection strategies. 
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Figure 7 –
Installation of a 
reinforced High 
Performance Turf 
Reinforcement Mat
(HPTRM) for slope 
protection.

Figure 8 –
Installation of high 
strength geogrids 
as basal reinforcement
below the flood 
defence at the Oder, 
Germany.
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Introduction
The design guideline CUR226:2016 for geosyn-
thetic-reinforced pile-supported (GRPS) embank-
ments adopted the Concentric Arches (CA) model
of van Eekelen (2013, 2015), which was validated
with more than 100 measurements taken in the
field and in experiments. These  embankments
were all reinforced with at least one layer of 
geogrid. Furthermore, all the embankments were
unsaturated, and installed above the ground-
water table.

Limited research was done on the influence of
water in a piled embankment. Briançon and
Simon (2012), Sloan (2011), and van Eekelen 
et al. (2020) showed that heavy rainfall affects
measurements. Song et al. (2018) concluded from
2D trapdoor tests with sand that groundwater
can degrade the soil arching mechanism. Wang et
al. (2019), however, found strengthening of soil
arching with increasing water level in full-scale
3D model experiments.
The validated use of CUR226:2016 is possible for

geometries, conditions and materials that match
the situation where the measurements for the 
validation were taken. If these requirements 
are not met, the guideline requests additional 
measurements to demonstrate that the CA model
gives good results for these conditions, too. 
For this purpose, field measurements were done
in a partly submerged piled embankment, 
reinforced with geotextiles only, without geo-
grids. This paper compares the measured strains
with the varying groundwater table and air tem-
perature, and calculations with the CA model of
CUR226:2016. This paper is a modified version of 
van Eekelen et al. (2023).

A partly submerged geotextile-
reinforced piled embankment 
Van Eekelen et al. (2022) describe a piled em-
bankment in the Netherlands for a regional motor
way that was opened on 6 April 2019. Pile caps
(0.75 m x 0.75 m), with smooth, rounded edges,
were installed on end-bearing prefab concrete
piles with an average centre-to-centre spacing of
2.28 m x 2.27 m. Two layers of woven geotextile
(TenCate Geolon® PET 400/50) were installed,
one with the machine (strong) direction across
the road axis, the second parallel to the road axis. 
Figure 1 shows part of the monitoring set-up. 
In addition, the air temperature was measured
hourly. For more details of the experimental set-
up, we refer the reader to van Eekelen et al (2023).
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Figure 1 –
Lay-out of 
the geo-
textile-
reinforced 
piled 
embankment 
and the 
monitoring 
equipment.

Figure 2 – Measured pore pressures, translated into groundwater table
(ppt1 and ppt6) and ditch water table (ppt7).

Figure 3 – Comparison measured geotextile strains and to measured 
groundwater table (ppt1).
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Measurements

PORE PRESSURES AND GROUNDWATER TABLE 
Figure 2 shows the measured pore pressures,
translated into groundwater level in m NAP,
where NAP is the Dutch reference level. The 
figure indicates the positions of ppt1 and 
ppt6; ppt1 lies in saturated soil. However, ppt6
is located higher, and the groundwater table 
sometimes drops below ppt6. 
Figure 2 shows what can happen if a pore pres-
sure transducer is installed in unsaturated soil.
Until June 2020, ppt1 and pp6 match. Just 
before 1 June 2020, the groundwater table drops
below ppt6. This causes an air bubble that starts
disturbing the measurements of ppt6, keeping
the values of ppt6 well below those of ppt1. 
In September 2020, the groundwater level 
passes ppt6 again, the air bubble disappears, 
and ppt1 and ppt6 match again. In April 2021, the 
groundwater table passes ppt6 again, resulting in
another air bubble that makes the measurements
of ppt6 unreliable again. 
It seems plausible that ppt1 continuously gives
reliable results; it shows a low water table during
the very dry summer of 2022, followed by a rainy
period in September 2022. The pore pressure
transducer in the ditch gave reliable results 
between February 2020 and June 2021 and 
between November 2021 and March 2022.

GEOTEXTILE STRAINS COMPARED TO
GROUNDWATER TABLE AND AVERAGE DAY
AIR TEMPERATURE
Strain gauges E1 and E2 give higher values than
strain gauges E3 and E4 (Figure 3). We cannot 
explain this difference. The strains show a 
sea-sonal effect; the strains are higher during 
summers than during winters. Furthermore, each
summer gives slightly higher strains than the 
previous summer. This can be explained by the
creeping behaviour of the geotextile. The measured
strains do not correlate clearly with the ground-
water table. 
Figure 4 zooms in on four dry weeks and four wet
weeks. The figure shows a clear daily cycle, the
cause of which is unclear. A similar daily effect
was found earlier by van Eekelen et al. (2007). The
daily cycles of traffic load or soil temperature
may have an influence. However, the different
strain gauges do not show a peak at the same
time of the day. 
Figure 4b shows an immediate response on rain:
the daily cycle is less clear. Possibly, the relatively

constant and low temperature caused by the rain
flattens the daily cycle. 
Figure 5 shows that the seasonal cycle of average
day temperature clearly correlates with the geo-
textile strains. The geotextile strains are higher 
in summer. The thermal expansion of the road
surface is too small to play a significant role in this
seasonal cycle. 

Calculations with the 
Concentric Arches model
The geotextile strains were calculated using the
CA model (van Eekelen, 2013, 2015, CUR226:
2016). No partial factors were used. Table 1 gives

the input parameters. Some remarks: 
– Usually, the traffic load is chosen p = 0 kPa when

comparing the model results to field measure-
ments. In  addition to that, a calculation was 
performed with 25% of the design load, to 
account for the permanent influence of the
traffic load on the strains in the geotextile.

– CUR226:2016 requests to reduce the soil ar-
ching for a relatively thin piled embankment
like this one, with a high traffic load. It is assu-
med that the soil arching is reduced perma-
nently due to the on-going traffic load. The soil
arching reduction factor (� ) equals 1.58 for this
configuration and traffic load, following Table
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This paper describes measurements in a partly submerged piled embankment,
reinforced with geotextiles only. The seasonal effect in the measured geotextile
strains strongly matches the seasonal temperature variation. No correlation with
the varying groundwater table was found. The measurements remain sufficiently

on the safe side of the results of the Concentric Arches model. Therefore, 
the CUR226:2016 design guideline may be used for this type of geotextile-
reinforced pile-supported embankments, of which the embankment is installed
partly below the groundwater table.

Figure 4 – Two four-week details of Figure 3; measured geotextile strains and measured 
groundwater table (a) dry period (no rain) and (b) wet period (several rainy periods).

Table 1 – Parameters used for the calculations with the Concentric Arches model*

Date 2019 2020 2030
28 Feb 1 Mar 5 Mar 12 Mar 24 Apr 29 Feb 25 Aug

Height fill (m) 0.00 0.30 0.60 1.00 1.51 1.51 1.51

Tensile stiffness 3200 3200 3200 2961 2722 2544 2426
geotextile (kN/m)

*Other input values: centre-to-centre distance piles sx = 2.27 m, sy = 2.28 m, square pile caps width 
a = 0.75 m, unit weight fill � = 19 kN/m3, fill friction angle fill � = 34o and 38o, subgrade reaction 
k = 0 kN/m3, traffic load p = 0 kPa and 11.5 kPa (25% of the design load), soil arching reduction 
coefficient � is either 1.0 (no soil arching reduction) or 1.58 (soil arching reduction).

Figure 5 –
Comparison 
measured geotextile
strains and the day-
average of the air 
temperature which 
was measured 
hourly at the field 
monitoring location.



2.3 of CUR226:2016. 
– It is expected that the calculation with some 

traffic load and soil arching reduction matches
the real situation best.

Comparisons measurements 
and calculations
Figure 6 compares the measured and calculated
geotextile strains. The smallest calculated strains
agree reasonably well with the average values of
E1 - E4. All other calculations give higher values
than the measured values, so application of
CUR226:2016 leads to a safe design.
Figure 7 extends of the validation of van Eekelen
et al. (2015). The figure shows that the measure-
ments of E1 and E2 agree well with the calcu-
lations, and the measurements of E3 and E4 
give lower values than calculated. This result is on 
the safe side, too. From this, we may conclude
that the CA model, and therefore CUR226:2016,
is applicable for this piled embankment of which
the embankment was installed partly below the
groundwater table. This conclusion is valid for
woven geotextiles as applied in this monitoring
project.

Conclusions
A partly submerged geotextile-reinforced piled
embankment was monitored. The measured geo-
textile strains show no correlation with the
groundwater level. However, the measured
strains have a strong seasonal cycle that match
the seasonal cycle in the average day air tempe-
rature quite well. This seasonal relationship 
between the air temperature and the geotextile
strains should be further analysed.  
The CA model matches the measurements well.
The CUR226:2016 design guideline adopted this
CA model. Therefore, CUR226:2016 is applicable
for this type of geotextile-reinforced piled 
embankment, which is installed partly below the
groundwater table. This conclusion is valid for the
woven geotextiles as applied in this monitoring
project.
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Figure 7 – Extension of the validation of the CA model with the new data, with in the calculations: 
� = 38o, traffic load p = 0 kPa and � = 1.58. Measured values of E1, E2, E3, E4 are day averages on
12-3 / 24-4 / 1-9-2019 and 29-2 /1-9-2022. The calculations were done using the input values 
given in Table 1.

Figure 6 – Comparison measured geotextile strains and geotextile strains calculated with the CA
model. Predictions higher than measured values are on the safe side.
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practice solution.”
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long-lasting products as possible. “By doing so,
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Final closure system of landfill site Derde Merwedehaven Dordrecht
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Geomembranes 
for storing 
and separating 
liquids

Geomembrane structures for four tunnel ramps "in wet conditions."

We are the only ones in 
the Netherlands to apply 

geosynthetics in both 
wet and dry conditions.
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Introduction
A geogrid-anchored sheet pile wall (SPW) is a 
relative new application of geogrids (van Duijnen
et al., 2022, Wittekoek, 2020, Wittekoek et al.,
2022). The system is closely linked to a retaining
wall of reinforced soil with a full-height facing as
well as to a traditional anchored SPW. However,
the geogrid-anchored SPW has more embedment
than a retaining wall of reinforced soil. And 
contrary to a traditionally anchored SPW, a 
geogrid anchor is also effective within the active
soil wedge when the SPW deforms. This paper
looks at small scale experiments, to get a feeling
for how the system works. This paper is a shorter
version of Wittekoek et al. (2023).

Small-scale experiments
Figure 1 shows the test set-up of the small-scale
experiments. The aluminium model-SPW models
the upper part of the embedded part of the 
SPW and was free to slide along the box bottom.

The polypropylene (PP) model-geogrid had a short-
term stiffness of 191 kN/m at 2% axial strain 
and a short-term tensile strength of 16.2 kN/m 
at a maximum strain of 13.5%. Table 1 lists the
properties of the sand fill.
A silicon block model at the passive side has a
stiffness of 159 kPa up to a strain of at least 8%.
This silicon block was tailored to simulate passive
resistance as realistic as possible. The strip 
surcharge load is applied by loading a 0.1 m wide
footing with a barrel that is filled with water 
during the test (the blue barrel in Figure 1). 
The soil-wall friction was minimized with a lubri-
cated thin (< 1mm) transparent silicone sheet.
Wittekoek et al. (2022) showed that tests in 
an eight times wider test box gave similar slip 
surfaces, proving that the narrow box results
were sufficiently reliable to analyse qualitatively.
The movement of the soil was tracked using 
the Particle Image Velocimetry (PIV) technique as
implemented by Stanier et al. (2015).  

Results small-scale experiments

THE LOCATION OF THE 
STRIP SURCHARGE LOAD
Figure 2 shows how the location of the surcharge
load determines the failure mechanism. Two slip
surfaces develop from the two edges of the strip
footing towards the SPW, dividing the soil into
three different zones. Zone I is characterized by
rigid soil body motions. The active zone II slides
along the critical slip surface 1A. Zone III is stable.
The third slip surface in Figure 2 only occurred in
Test 19, not in duplicate Test 18 or any other test. 

A greater distance between load and SPW results
in stiffer behaviour (Figure 3): the wider slip 
surfaces mobilize more shear resistance, and 
the load is distributed to deeper soil. Figure 3a
and b differ remarkably. If the load is at 84 mm
from the SPW, the 60 mm geogrid is located fully
in zone I. Nevertheless, the bearing capacity 
increases compared to the situation without 
geogrid. The load position has less influence for
longer geogrids (Figure 3c and d).

GEOGRID ANCHOR LENGTH
Longer geogrids provide more resistance (Figure 4)
which increases the bearing capacity of the 
entire system. The longest geogrid initially 
behaves stiffer than the shorter geogrids. Figure
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Figure 1 –
Test set-up.
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Table 1 – Properties Baskarp B15 sand.

Parameter Value Parameter Value

Relative density ID (%)         63-83 Dilatancy angle  �triax (o) 15.0
Median particle 0.137 Cohesion c (kPa) 0.6
diameter D50 (mm)
Coefficient of 1.6 Secant Young’s modulus 72.4
uniformity D60/D10 (-) at confining pressure 

of 100 E50
ref (MPa)

Secant internal friction 37* Power in power law 0.54
angle � triax

sec   (o) material stiffness m (-)
Residual internal friction 34 Poisson ratio ν (-) 0.25
angle � triax

res   (o)

* Plane strain value of (11/9 • triaxial value =) 45o.



4b shows a straight slip surface for all geogrids.
Only for the longest geogrid of 180 mm (Test 45),
the slip surface crosses the geogrid and a 
second curved slip surface develops. The initial
straight slip surface is therefore not the critical
one. The geogrid is activated more efficiently,
and the orientation of the slip surface at the 
intersection with the geogrid changes. The geo-
grid is activated more efficiently, and the orien-
tation of the slip surface at the intersection with
the geogrid changes, like also found by Ziegler
(2010).  The slip surface therefore becomes lon-
ger and curved. 

A SECOND GEOGRID ANCHOR
Figure 5 compares 1 and 2 geogrids. The deforma-

tions are equal up to a surcharge load of 3.0 kN/m.
Above 4.0 kN/m, the SPW slides along the 
box bottom in both tests. This failure mode is
triggered by the relatively high resistance of 
the geogrid anchor(s). For this higher surcharge
load, the second geogrid limits the deformations
when the vertical pressure on the geogrids (and
therefore the soil-geogrid interface friction) inc-
rease. This is in line with the 2D FEM calculations
of Schoen et al. (2023), that showed that the 
geogrid anchor is more effective when installed
at a lower level. 
Contrary to expectations, point Z settles more
than point Y. The second geogrid increases 
this difference. Obviously, the geogrids limit the
settlement of the soil above. Figure 6 shows how

the second geogrid changes the slip surface: it
becomes slightly wider, and therefore longer, as
it circumvents the second geogrid.

CONNECTION GEOGRID – SHEET PILE WALL
In four tests, the geogrid was not connected to
the SPW (Figure 7). From these tests we conclude
that:
– Connecting the geogrid increases the failure

load.
– Short non-connected geogrids ≤130 mm hardly

contribute to the failure load.
– Short connected geogrids ≤130 mm increase

the failure load, although they are located in
zones I and II only. So, zones I and II are only 
activated when the geogrid is connected to 
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Small-scale experiments on geogrid-anchored sheet pile walls (SPWs) under strip
footing surcharge loading were conducted at the Deltares laboratory. The follo-
wing was concluded from the experiments. Two slip surfaces develop, starting
at the edges of the strip footing. They divide the soil behind the SPW into three
zones. The paper analyses the contributions of each of these zones to the failure

load of the structure. The location of the strip footing surcharge load, the geogrid
length and the number of geogrid anchors all affect the failure load of the struc-
ture. Furthermore, the slip surface reorients at the intersection with geogrids,
and even very short geogrid anchors contribute to the total resistance. 

Figure 2 –
Slip surfaces for a
surcharge load of ~4
kN/m. Test 19. 1A:
critical slip surface
and 1B: secondary
slip surface. The slip 
surfaces divide the
soil in three zones: 
active zone II 
between zones I 
and III.

Table 2 – The test series. This paper gives results of the tests with bold-printed numbers. Duplicate tests are denoted by a forward slash.

Test number 12/13 14/15 16/17/45 18/19 20/21 22/23 28 30 31 41/42 43/44 47 48 51 52
Number of geogrids 1 1 1 1 2 2 1 1 1 1 1 0 0 1 1
Length geogrids (mm) 110 110 180 180 180+110 180+110 60 60 60 180 110 - - 130 130
Connected to SPW? Yes Yes Yes Yes Yes Yes Yes Yes No No No - - No Yes
Vertical distance 50 50 50 50 50+120 50+120 50 50 50 50 50 - - 50 50
top SPW-geogrid (mm) 

Horizontal distance 30 60 30 130 130 30 30 84 30 30 30 84 30 30 30
surcharge load-SPW (mm) 

Relative density fill (%) 67/71 73/74 68/74/76 74/73 71/64 74/78 81 78 68 75/76 69/76 75 71 67 65

Figure 3 –
Influence of the

location of the
surcharge load

(a) without geogrid
(b) 60 mm geogrid

(c) 110 mm geogrid
and (d) 180 mm

geogrid.    
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the SPW and the geogrid has moved down-
wards with the soil in zone II.

– Short geogrids ≤130 mm do not reinforce the
soil, because the short non-connected geogrids
do not provide more failure resistance than
found in the situation without geogrid.

– The increase in failure load due to connecting
the geogrids (≤130 mm) indicates the presence
of the ‘membrane effect’. This term refers to
the capacity of the geogrid to be deformed,
while absorbing forces that were initially per-
pendicular to its surface. When the geogrid
moves downwards with the soil in Zone II, 
tensile forces develop in the geogrid through
which the geogrid transfers vertical soil 
pressures to zone I, the SPW, if connected, 
and zone III.

– The 180 mm geogrid, even if not connected to
the SPW, contributes to the total resistance.
The failure load results from the pull-out 
resistance in zones I and III.

– Connecting the 180 mm geogrid activates 
the rear part of the geogrid (zone III) more 
effectively and increases the failure load. 
However, the rear part contributes most to the
total resistance at higher load levels while the
geogrid is being pulled out by the sliding soil
mass in zone II. 

– The total resistance of a connected geo-
grid anchor consists of contributions of the 
membrane effect (zone I), frictional resistance
(zone II) and pull-out resistance (zone III).

Conclusions
A series of small-scale tests of geogrid-anchored
SPWs led to the following conclusions. Two 
slip surfaces, starting at the edges of the strip
footing, divide the fill behind the SPW into three
zones: the active zone II, zone I between SPW 
and active zone II. The paper analyses the contri-
butions of each of these zones to failure. The 
location of the strip footing surcharge load, the
length of the geogrids and the number of geogrid
anchors affect the failure load of the structure.
The slip surface at the intersection of the critical
slip surface reorients with the geogrids, and even
a very short geogrid anchor contributes to the
total resistance.
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Figure 6 –
Slip planes for 
1 or 2 geogrids.

Figure 5 – Load-displacement behaviour for 1 or 2 geogrids. Surcharge
load at 30 mm from the SPW. Tests 45 and 22: both have a 180 mm geogrid
at the same position, Test 22 has a second geogrid (110 mm).

Figure 7 – Difference between geogrids that are connected or not to the SPW.

Figure 4 – Influence of the geogrid length. Surcharge load at
30 mm from the SPW. The background of the right-hand 
figure is Test 45 (180 mm geogrid).
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Fuelled by the increasingly clear wishes of clients to build envi-
ronmentally efficiently, innovative solutions with Tensar geosyn-
thetics are becoming increasingly common. That is precisely
why geogrids are bound by rules regarding reliability and risks.
In addition to a proven extended design life, aspects like dura-
bility, and sustainability are certified.
After five decades of extensive research and our continuing 
innovations, Tensar now clearly outperforms all prior geogrids
with the new Tensar® InterAx®. Whether to reduce construction
time, cost, carbon or extend design life, these benefits are 
quantified in design software Tensar+. 

With the change of the most important European sustainability standard
EN 15804 + A2, the Dutch determination method “Environmental Cost
Indicator”, known as MKI, has also changed. This meant that new Life
Cycle Assessments (LCA), additional tests and substantiated reports
had to be conducted before July 2022, and Environmental Product 
Declarations (EPD), changed. All EPD’s, which must be included in 
the National Environmental Database, or NMD, to determine a valid 
MKI-score, therefore were renewed to the required complete "A to D". 

Applying Tensar® InterAx® broadly results in two improvement 
factors. First, less granular material used and/or asphalt, which leads to
fewer site visits for supply or removal, but also less CO2 and nitrogen
emissions. Secondly, increased service life of trafficked surfaces, and
thus reduction of maintenance postpones reconstruction, and the total
cost over its entire service life. 
When calculating with Tensar® InterAx® in accordance with the current

guideline CROW C1001, the amount of granular material can be 
reduced by up to 60% and the design life of roads can be extended 
to more than 300%. 
This leads directly to the improving MKI scores and increases the
chance of awarding a project to contractors. Tensar® InterAx® related
improved performance makes the difference even greater compared to
the performance of already existing solutions with, among other things,
geotextiles, or other solutions such as chemical stabilization.
Although both improvement factors are included in the MKI-score, the
biggest gain is in the reduction of thickness with a mechanical stabilized
layer (MSL), and therefore the required amount of granular material. 
Due to this material reduction, the CO2 footprint decreases heavily, 
but also excavation, compaction, and transport. 

CROW C1001 provides the insight into this “structural contribution” of a
geogrid by means of calculations with certified “improvement factors”
determined during full-scale research. So, no selectively chosen 
lab-parameters which are mainly “more” but contribute nothing, nor 
can be included in a design. Designers can therefore use a CROW
C1001 calculation, based on empirical models, to reliably determine 
pavements for the required service life.

Therefore Tensar introduced Tensar+, a free, cloud-based design 
software that allows to design with geogrids in a variety of applications
and design methods.
Now everybody can quantify or express performance in design life, 
and thickness reduction while maintaining service life. So indicating 
reduction of construction costs, time, and carbon, in real-time as 
parameters change. Furthermore, see the reduced environmental 
impact of projects.

Improved knowledge
and research 
on Tensar geogrids
lead to a reduction 
in the impact on 
the environment

Paul ter Horst, BBA-BEng
Area Manager, Tensar International BV
NGO-Committee member Innovation & Knowledge 

A D V E R T O R I A L

+31 (0)73 624 1916  

www.tensar.nl
19

S E P T E M B E R  2 0 2 3G E O A R T



For more than 20 years, Normec QS has been

providing independent, accredited services in

testing, inspection and certification of plastic

films, pipes, structures, renewable energy 

and biobased products. Since 2021, the 

company has been part of the Normec Group,

specifically the Sustainability division. 

Normec QS customers find that this allows

them to be served even better, also because

they often need services in multiple areas. 

Several new international customers have

therefore joined the Normec Group since

2021. The complementary services certainly 

contribute to this. The personal, customer-

oriented approach has remained. This is 

typical of the entire Normec Group.

Service life testing for geosynthetics
An example of that customer focus is the custom-

made inspections Normec QS carries out for 

customers when it comes to the service life of app-

lied plastics. This depends on various environmental

factors. Due to chemical, physical and mechanical

degradation processes, the service life may be 

shorter than expected. A laboratory study can 

identify this premature failure. Normec QS’s 

laboratory facilities are equipped for research into

the expected lifetime of plastic materials and 

structures, among others.

For example, research is carried out to determine

the expected service life of a foil construction or 

geotextile. A starting point may be to carry out 

long-term tests. This allows a statement to be made

about a life expectancy for a period of at least 100

years. A recognised long-term behaviour expert 

interprets the research results and records them in

a research report with life expectancy.

Normec QS: testing, inspecting 
and certifying for over 20 years

A D V E R T O R I A L

Contact person
Iljo Fluit
General Director

Fully independent inspection of plastic pipes.
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Predicting residual lifetime
PVC and PE (pressure) pipes make up a large part

of transport pipes for gas, drinking and wastewater.

As these pipes have been laid and used since the

middle of the last century, the (remaining) lifetime

of plastic distribution pipes is a growing area of 

interest for operators. Normec QS has the expertise

and research facilities to map the residual lifetime

of piping systems.

By surveying the current condition of piping sys-

tems, it is possible to predict the residual lifetime.

This allows more targeted investment decisions 

to be made. Thus, large-scale network renewal 

can give way to replacements at the most crucial 

locations.

Biodegradability
For the combination lifetime and environmental 

impact, Normec QS collaborates with sister company

Normec OWS. They are global leaders in deter-

mining biodegradability. When plastic products end

up in nature, they should preferably degrade over

time and not cause damage to the environment.

Normec OWS offers degradation and toxicity tests

under different conditions to simulate how 

materials degrade and behave when released into

different environments.

The environment in which the product is tested

should depend primarily on the expected end-of-

life. Degradability is not only an inherent material

property, but also depends on environmental 

conditions such as temperature, biological activity

and microbial diversity.

In short, through its specialist knowledge of applied

plastics, Normec QS helps make the world a better

place and save costs for its customers. For more 

information, visit https://normecqs.com or contact

Normec QS specialists directly. They will be happy

to help you!

31 (0)88 166 2000

normecqs.com

A D V E R T O R I A L

Destructive testing and 
lifetime prediction in the 

accredited laboratory.

21
S E P T E M B E R  2 0 2 3G E O A R T



Constructing windmills  
on a sea-defense dike in 
The Netherlands with  
Enka Solutions

The Netherlands is a small, densely populated 

country where space for any type of construction 

is at a premium. This is particularly true when 

decisions on the construction of windfarms  

have to be made, and every effort is made to 

locate these away from centers of population. 

The construction of a windfarm in the north  

of the country is a good example of this. 

 

Wind turbines on sea-defense dike  
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Benefits of the solution

 

  

 

About Enkagrid

 

 

 

  

  

  

 

 

 

Freudenberg Performance Materials

 

 

236927_Spread_Geokunst_2023_WT.indd   2 21-06-2023   10:54

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

derCk (jidredlorpetsorm OafndiW

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

)EW: Rsti

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 
ahs terusne

m sroftae plht

e lnart caht

chi trey lain

n aoitadnuof

f Ee ose uhT

f ts otfieneB

ro fdewoall

f a ce ose uhT  

 

  

 

 

 

 

  

  

  

 

 

 

 

 
hd tnatshtin wae crutucrte sht ta

d mnuora-pare wh. Terutucrtm s

evd oetubirtsiy dlneve eres wdao

ginurns eehil w,thgie wdn assenkc

itucdet rnacfiingir a sod fewolln a

e nare chn t0 iX 6Ad Mirgaknf E

noituloe shf t

.dnatsdra hreallm s a

e narn coitucrtsnog cnibmilf a c  

 

  

 

 

 

 

  

  

  

 

 

 

 

 
e h

d ohte

r e

g

n o

Landward side

+4.75 m

+5.20 m

Geogrid height

+4.00 m

Sand height

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

1 m 1 m0.5 m

Wrap-around dimensions

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

Rd PirgaknE

ns ayalwiar

n td ideeen

d MirgaknE

n vs idirgoeg

rd pirgaknE

kan EtuobA

dwnae lhn to

iartl saretal

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

tucrtn sd ieiplpe ars atucdorO pR

a-ine uhs taereh, wsnoitadnuod f

daof rn ooitzailibate ssba-bue sh

paae ckatpu-daoe lhs tdeivorX pA

-ie bh. Tshtgnertle sisnes tuoiran v

a-ind unl aaixa-ide bulcns itucdo

idrgka

.ekie dhf tde oid sradw

olp seete shg tnols aegde eht tn a

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

e fht tn aees bad hno aga

g wnireenignl eivie cho tt

eucdortnt iahr teenoip

f Et oucdors a pd iirgaknE

s eru

l aixa

, sd

seiticpa

l aixa-

l aixa

e po

e totenmknabem

e wohf tn ooitces ssorC

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

n Co

olF

g nipolevf det onorferoe f

s rae0 yn 6ahe trd molrog w

s citehtnysoef ge ose uhd t

l baol, a gsnoituola Sknf E

oF

nEe ht trm afotalg pnrki

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

d mons atcejoojrg pnireenignl eivin C

n fd Ieknin Ls onoituola Sknw Eolol

s w uollo

XA® Mdrigkan

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

:erd mo

s etadpr uon f

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

rofreh pgih

edlew-ersal

f ede oae mra

d pesaercni

n gevownon

s tenibmoc

nl aaicepA s

o 9p ts uepols

ates rh aucs

g

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

t nellecxg enidivord pne acnam

etenarau g,slavtern iraluge rt ade

t aahs tpartr semyold pdeurtxf e

irgoed girgakn. Eycneicffit ecejoojrd p

r ot fucdorle pgnin a se ilitxetoen g

h a tid wirl gaixa-ir baluege rh

d irgaknd Eeucdortny iltneced rn

batl sanretnr iiehe trusno e° t0o 9

n sr i, ostnemknbam, esllag wninia

plpO p

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

e usahn pgise dehm torf

aes rs itrepxf em oaeA t

nmoirvn edn aciuladryh

rtsarfnn ioitatropsnart

tadiolsnol ciod sipar ro

ontzior h,loront conisore

e urn aiarddnobold Cna

ucs stucdors pnoituolS

os fnoituolm sort frpaA

pp acitehntysoe gynam

g

gni

e r

s di

r 

. ytilib

p eetn s

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

. noitallatsno ip te u

s tcejoojrt proppuo sy tda

.ginreeingn elatnenm

n s il ales we arutucr

n d ieriuqee rrn aoi

,eganiar dlacitre v orlaont

e rehs wtcejoojrn pd iese u

n iardakn, Etamakns Eh a

a kn, Etnemecrofniel rior so

.ecni srev esonitacilpp

g p

no
oF

ni

31 (+

rF

nE

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

nIedkn Lin
s w uollo

mco.snoituloskane@fo

0034 145 78)031 (

erita Mecnarmof Pergerbenduer

f d onars a bs inoituola Skn

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

slaeri

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

gnikcolterni

h pg

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

.teagergg adn adir genewte bg

g ed p

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

tucdors pnoituola SknE

n pg

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

.blealiavy allbaole grs at

p t

w

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

moc.nsoitulosanke.ww

@

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

 

 

  

 

 

 

 

  

  

  

 

 

 

 

 

236927_Spread_Geokunst_2023_WT.indd   2 21-06-2023   10:54

23
S E P T E M B E R  2 0 2 3G E O A R T

A D V E R T O R I A L




