Nederlandse Geotextiel Organisatie – IGS Netherlands 2nd Niger Bridge Project in Nigeria

Max Nods (GeSySO, Netherlands)

Managing Director / Sr. Geosynthetic Engineer

Jeroen Dijkstra (Cofra, Netherlands)
Technical Sales Manager / Ground Improvement Specialist

08-03-2022

1

Content

01 Introduction (Max)

02 The Project (Max)

03 Geosynthetic Solutions / Design (Jeroen)

04 Execution (Jeroen)

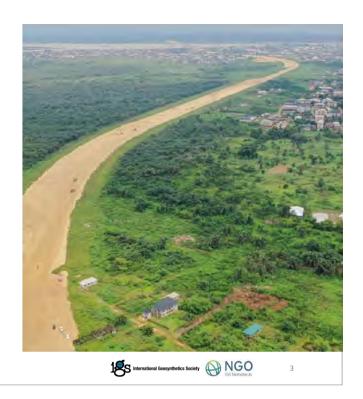
05 Closing Remarks (Max)

22

08-03-2022

Content

01 Introduction


02 The Project

03 Geosynthetic Solutions / Design

04 Execution

05 Closing Remarks

08-03-2022

3

Nigeria

- · Population and infrastructure
- · Approx. 200 Million people
- Size approx. 3 times Germany
- · Infrastructure underdeveloped

4

08-03-2022

Population growth

- Lagos city in 2022:
- Population over 15.3 Million

	12,3 New York 11,3 Tokyo 8,4 London 6,5 Paris	23,3 Tokyo 16,2 New York	32.5 Tokyo			
3 4 5	8,4 London	16 2 Now York		34,4 Tokyo	36,7 Tokyo	37,1 Tokyo
4			16,1 New York	18,0 Mexico City	22,2 Delhi	28,6 Delhi
5	6.5 Paris	9,4 Osaka-Kobe	15,3 Mexico City	17,8 New York	20,3 São Paulo	25,8 Mumbai
		8,8 Mexico City	14,8 São Paulo	17,1 São Paulo	20,0 Mumbai	21,7 São Paulo
6	5,4 Moscow	8,4 Los Angeles	12,3 Mumbai	16,1 Mumbai	19,5 Mexico City	20,9 Dhaka
	5,1 Buenos Aires	8,3 Paris	11,0 Osaka-Kobe	15,7 Delhi	19,4 New York	20,7 Mexico City
7	5,0 Chicago	8,1 Buenos Aires	10,9 Calcutta	13,2 Shanghai	16,6 Shanghai	20,6 New York
8	4,5 Calcutta	7,6 São Paulo	10,9 Los Angeles	13,1 Calcutta	15,6 Calcutta	20,1 Calcutta
9	4,3 Shanghai	7,5 London	10,5 Seoul	11,8 Buenos Aires	14,6 Dhaka	20,0 Shanghai
10	4,1 Osaka-Kobe	7,1 Moscow	10,5 Buenos Aires	11,8 Los Angeles	13,1 Karachi	18,7 Karachi
11	4.0 Los Angeles	7.1 Chicago	9,7 Delhi	11,2 Osaka-Kobe	13,1 Buenos Aires	15,8 Lagos
12	3,3 Berlin	6,9 Calcutta	9,6 Rio de Janeiro	10,8 Rio de Janeiro	12,8 Los Angeles	15,0 Kinshasa
13	3,1 Philadelphia	6,6 Rio de Janeiro	9.3 Paris	10,3 Dhaka	12,4 Beijing	15,0 Beijing
14	3.0 Rio de Janeiro	6.0 Shanghai	9.1 Cairo	10.2 Cairo	11.9 Rio de Janeiro	14.9 Manila
15	2.9 St Petersburg	5,8 Mumbai	9.0 Moscow	10,0 Karachi	11.6 Manila	13,7 Buenos Aires
16	2,9 Mexico City	5,6 Cairo	8,2 Jakarta	10,0 Moscow	11,3 Osaka-Kobe	13,7 Los Angeles
17	2,9 Mumbai	5,3 Seoul	8,0 Manila	10,0 Manila	11,0 Cairo	13,5 Cairo
18	2,8 Detroit	4.4 Beijing	7,8 Shanghai	9,9 Seoul	10,6 Lagos	12,7 Rio de Janeiro
19	2.6 Boston	4.4 Philadelphia	7.7 London	9,8 Beijing	10.5 Moscow	12,1 Istanbul
20	2,5 Cairo	4.0 St Petersburg	7,4 Chicago	9,7 Paris	10,5 Istanbul	11,4 Osaka-Kobe
21	2,5 Tianjin	4.0 Detroit	7,1 Karachi	8,7 Istanbul	10,5 Paris	11,1 Shenzhen
22	2,4 Manchester	3,9 Jakarta	6,8 Beijing	8,4 Jakarta	9,8 Seoul	11,1 Chongging
23	2,3 São Paulo	3,5 Manila	6,6 Dhaka	8,3 Chicago	9,4 Chongging	11,0 Guangzhou
24	2,2 Birmingham	3,5 Delhi	6,6 Istanbul	8.2 London	9,2 Jakarta	10,9 Paris
25	2,1 Shenyang	3,5 Madrid	6,4 Tehran	7,3 Guangzhou	9,2 Chicago	10,8 Jakarta
26	1,9 Roma (Rome)	3,5 Barcelona	5,9 Bangkok	7,3 Lima	9,0 Shenzhen	10,7 Moscow
27	1,9 Milano (Milan)	3,5 Hong Kong	5,8 Lima	7.2 Lagos	8,9 Lima	10,5 Bogotá
28	1,9 San Francisco	3,3 Tianjin	5,7 Hong Kong	6,9 Tehran	8,9 Guangzhou	10,5 Lima
29	1.8 Barcelona	3.3 Tehran	5.3 Madras	6,7 Tianjin	8.8 Kinshasa	10.3 Lahore
30	1,8 Glasgow	3,2 Berlin	5,0 St Petersburg	6,7 Hong Kong	8,6 London	9,9 Chicago
31			4,8 Lagos			
98		1,4 Lagos				


08-03-2022

185 International Geosynthetics Society

Population

1960: 129,000 1990: 337,000 2020: 1,415,000 2022: 1,553,000

7

Content

08-03-2022

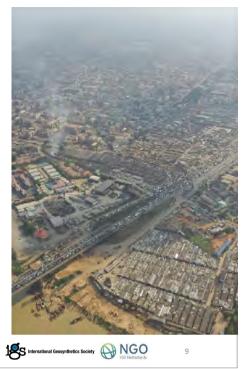
Introduction

The Project

Geosynthetic Solutions / Design

04 Execution

05 Closing Remarks


08-03-2022

Niger bridge at Onitsha

· Link in the trans African highway system

9

Current Niger bridge

- Meets lifetime
- Congested

History

(First) Niger bridge

- · NEDECO feasibility studies in the 1950's
- 1964-1965 Bridge Construction by Dumez
- 1967-1970 Civil war (Biafra war), bridge partly destroyed
- Rehabilitated under President Jonathan Goodluck Administration after war
- Very fast population growth of Onitsha during oil boom in 1970s and 1980s
- 1987 concerns about the state of the bridge, first discussions about the 2nd Niger Bridge
- 1999-2007 President Obasanju promised to build the 2nd Niger Bridge, no result
- 2012 President Jonathan Goodluck approved contract for final planning and design, and promised to deliver before end of term 2015; PPP project financing
- From 2015 President Buhari cancelled earlier contract, reached new contract and financing model with JB

International Geosynthetics Society NGO

08-03-2022

11

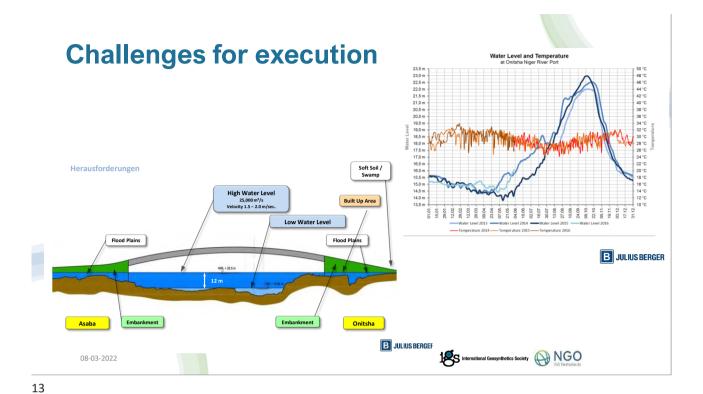
FEDERAL MINISTRY OF WORKS MABUSHI-ABUJA **PRESS RELEASE**

June 2014 Press release

SECOND NIGER BRIDGE PROJECT STILL ON-COURSE

The Federal Ministry of Works wishes to clarify that reports suggesting that work on the Second River Niger Bridge has been suspended due to non-compliance with environmental laws were based on inaccurate information.

Contrary to recent reports, work on the Second River Niger Bridge Project continues to progress according to schedule ensuring timely completion of the Bridge, which is set to be executed under the Public Private Partnership (PPP) arrangement for a concessional period of 25 years through the Design, Build, Finance, Operate and Transfer (DBFOT) model. The Ministry is working with the Julius Berger-NSIA Motorways Investment Company (J8-NMIC) Consortium, preferred bidder for the development of the Second River Niger Bridge Project, to ensure timely execution of the project.


In fact, under an Early Works Arrangement, the nominated EPC mobilization to site and timely execution of scheduled activities is anticipated. The JB-NMIC Consortium has assured that compliance anticipated. In B-NMIC Consortum nos assured that compilance with Nigerian Environmental Laws is of paramount priority and that Environment Impact Assessment (EIA) is an intrinsic part of the Early Works, which is being carried out in compilance with the environmental laws of Nigeria. It was highlighted during the groundbreaking ceremony that this landmark project is part of the transformation agend of the President Jonathan's administration and once again wish to assure the good people of the South East geo-political zone and indeed the entire citizenry of Nigeria who the beneficiary of this critical national infrastructure project, of the Federal Government's resolve to actualize it.

Director (Information)
Federal Ministry of Works, Headquarters, Mabushi, Abuja. 08-03-2022

History

2nd Niger bridge

- · 2013 First discussions and presentations at JBI and JBN
- 2014 first supply of nonwovens, and trial material GEC;
 JB negotiating early works packages
- 2015 new president Buhari, new negotiations, new financing options, no activities, demobilization JBN
- 2016 negotiations about new work packages, no activities
- 2017 negotiations, instructions from Minister to JB to prepare for project
- 2018 first supplies of materials (GECs and Stabilenka) and quotations for GECs and PVDs (Cofra)
- 2019 start installation of PVDs and GECs
- 2022 latest supplies

08-03-2022

Key Figures

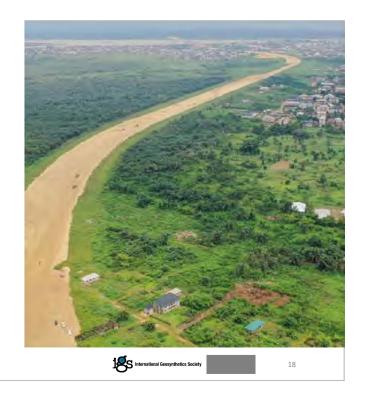
- · Project by Federal Government of Nigeria,
- · New bridge of 1590m long
- New highway section of 10km
 - Embankment heights of up to 14m
 - Width of 36m
 - 3,6M m3 sand
 - 840,000 m2 high strength geotextiles (strengths from 300kN/m up to 2500kN/m)
 - 230,000 m geotextile encased columns / 16.000 piles
 - 1,400,000 m vertical drains
- Oweri Interchange
- Toll station
- · Main contractor: Julius Berger Nigeria

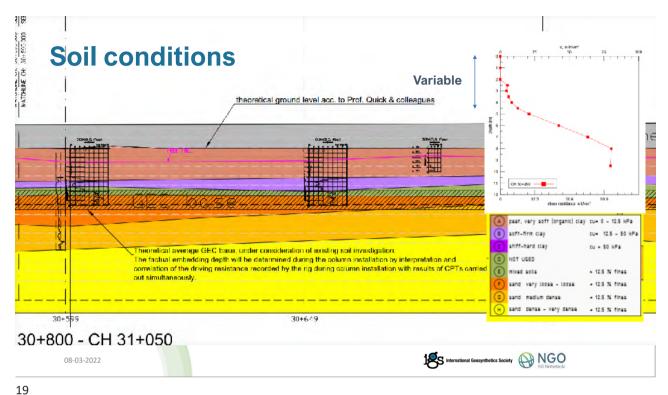
08-03-2022

15

Content

01 Introduction

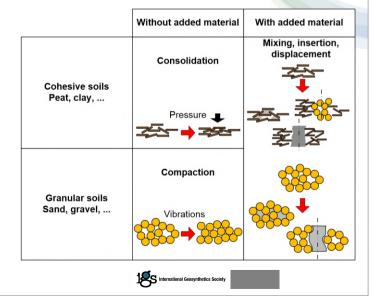

02 The Project


 $03 \quad {\sf Geosynthetic\ Solutions\ /\ Design}$

04 Execution

05 Closing Remarks

08-03-2022

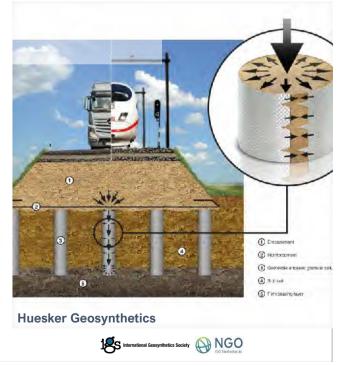


Basic concepts of ground improvement

- Criteria
 - Time
 - Stability
 - · (Residual) Settlement
 - Costs

Consolidation

- Vertical drains
 - · Shorten consolidation time
 - · Increase stability
 - · Often used with a basal reinforcement



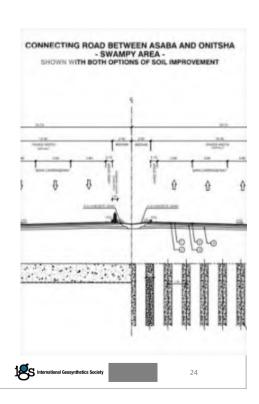
21

Element

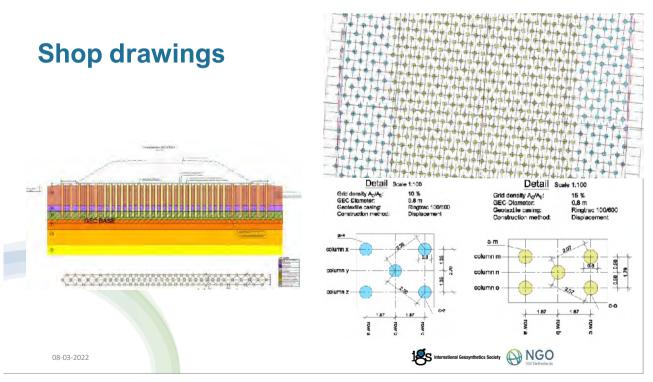
- · Geotextile encased columns
 - · Load transferred to sand layer
 - · Geotextile acts as confinement
 - · Steeper slopes
 - · Increased stability
 - · Faster lifting schedule

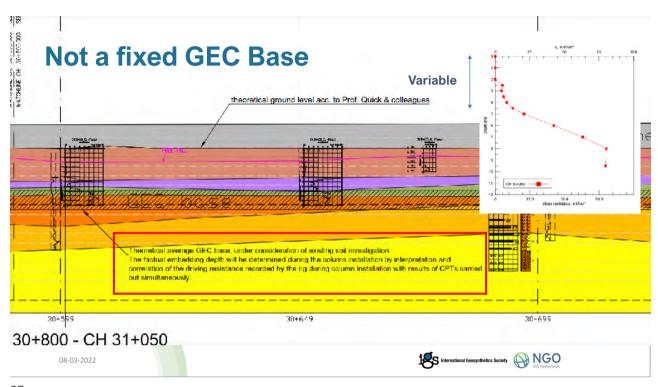
Basal reinforcement

- · Required to provide additional shear resistance
- · Faster lift schedule
- · Steeper slopes during construction



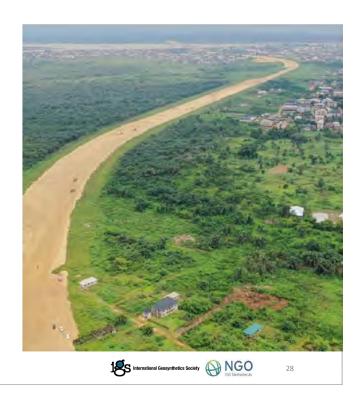
23


Design


- Design Kempfert & Partners (Germany)
- GEC section (red)
 - ~16.000 piles (230.000m1)
- PVD section (yellow)
 - 1.400.000m1

Content

01 Introduction

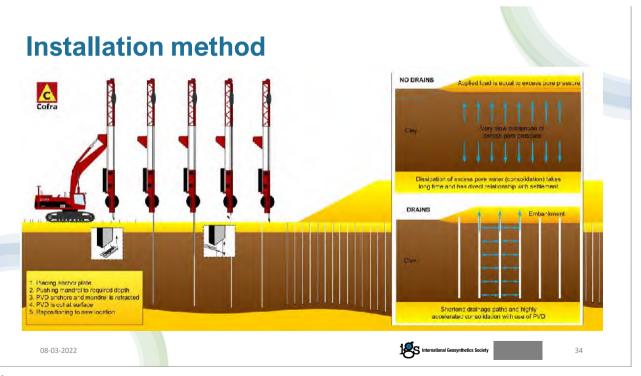

02 The Project

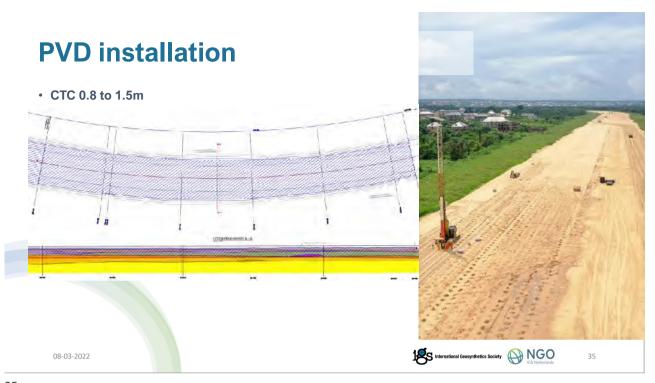
03 Geosynthetic Solutions / Design

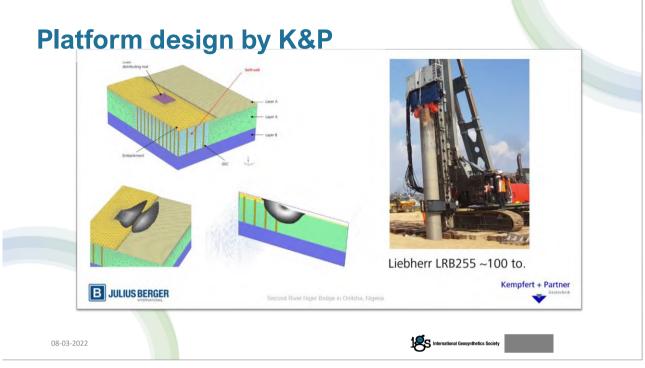
04 Execution

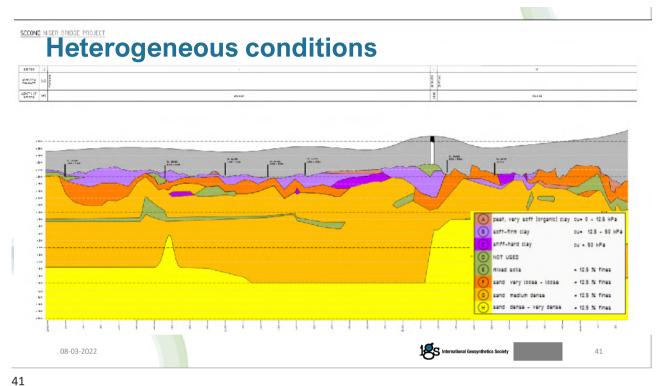
05 Closing Remarks

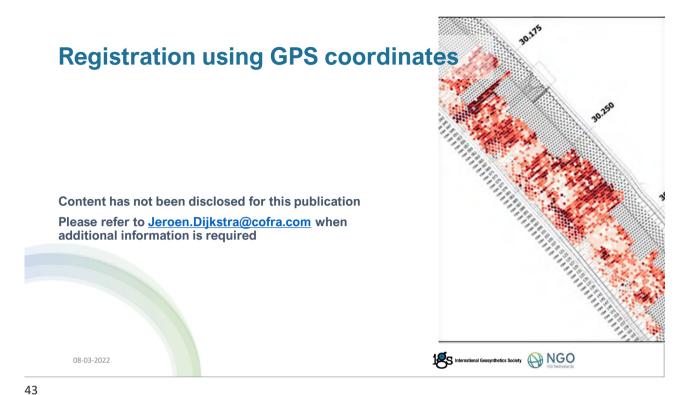
08-03-2022



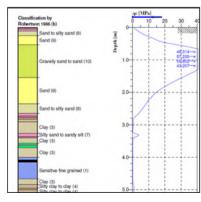







Installation criteria

- Stop criteria
 - · Driving speed and hold time
 - RPM/Frequency of the vibrator
 - · Pulldown force
- · Found not useful due to dependency on variable parameters



185 International Geosynthetics Society NGO

Subsoil typical CPT

Content has partially been disclosed for this publication Please refer to Jeroen.Dijkstra@cofra.com when additional information is required

International Geosynthetics Society NGO

CPT inside column

Content has not been disclosed for this publication Please refer to Jeroen.Dijkstra@cofra.com when additional information is required

08-03-2022

45

Lessons learned

- · Thickness and density of the working platform
 - · Not to long present and no constant levelling
 - · Be careful with roller and bulldozer compaction, haul road
- Installation depth.
 - · Stiffening downward profile
 - · Highly variable geology
- · Quality control is very important

185 International Geosynthetics Society NGO

08-03-2022

Current situation GEC

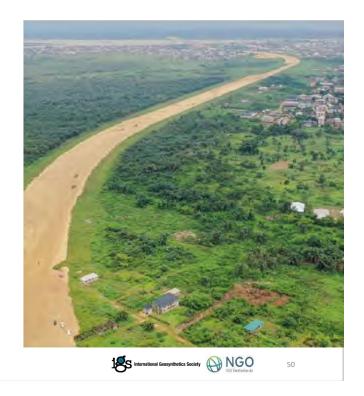
- · Last flight out before lock-down / travel bans
- · Transferred installation and experienced crews to JBN

08-03-2022

47

Content

01 Introduction


02 The Project

03 Geosynthetic Solutions / Design

04 Execution

05 Closing Remarks

08-03-2022

